
The DIDADIT Protocol Page 1

The DIDADIT Protocol (aka „R“)

(Abbrev.: Data Is Data And Data Is Transferable)

Version 0.9.1

1. Assumptions

• All binary numbers are little-endian (Intel style)
• All alphanumerical strings are ISO-8859-1 coded

2. Basic concept

Data is transported block by block. Each block consists of

• a block delimiter (EOB),
• the data and
• a CRC.

The whole block (including data) is stuffed by means of the SLIP/KISS pattern (see
appendix D).

The CRC is mandatory and included in every block. Blocks with an incorrect CRC are
discarded, as the reason for the CRC error cannot be determined.

The used CRC polynome is the same as used by the AutoBIN protocol.

<EOB><DATA><CRC><EOB>

3. Block types

The first two bytes of a block always specify the block type. The block type identifies
the kind of following data.

<TYPE><DATA>

If a block requires an MD5 hash (noted in this spec with "MD5: yes"), it is included
between the block type and the data.

<TYPE><MD5><DATA>

All block types except <DATA> require an answer block. No other non-DATA block
may be sent until the awaited reaction has been received. If the reaction is not
received for a certain timespan (implementation specific), the first block is repeated.
After five retries the connection is aborted.

Certain block types contain an MD5 hash after the type tag. It is used to help a third,
monitoring station identify the transferred file.

The DIDADIT Protocol Page 2

3.1 INFO

This block contains a list of TAG=VALUE pairs. Each pair is followed by a <CR>.

Currently defined tags:

Tag Value type Description

FILENAME string Name of the file being transferred.

PATH string
Directory in which the file is written on the receiving
machine.

SIZE decimal Size of the file in bytes.

MD5
hexadecimal
ASCII

MD5 hash of the complete file.

TIME decimal TIME is decimal as epoch-time (seconds since 1970).

BLOCKSIZE decimal Size of a transfer block.

VERSION string DIDADIT version being used.

FEATURES string
This field specifies DIDADIT extentions. The following
strings are currently defined: CHAT

A TAG=VALUE-pair may be no longer than 512 bytes.

MD5: no
Reaction: START or ERR

3.2 START

Supercedes „#EOK#“ from the first draft.

Currently defined tags:

Tag Value type Description Comment

OFFSET decimal as offset for a resume.
If OFFSET=SIZE, the
other station has to
send a FIN-block
immediately and then
waits for a REQ-block.

The DIDADIT Protocol Page 3

PARTMD5 hexadecimal The file's MD5-hash
from beginning to
OFFSET. Used to check
if we still are
transferring the same
file.

This command may only be
sent if the receiver cannot
determine whether the sent
file is the same as the parti-
ally received one. In this
case, the transmitting station
must check whether its file
hash up to the specified
OFFSET is the same as the
here transmitted MD5-hash.
If they are the same, the
transfer starts at the speci-
fied offset. Otherwise the
transfer is started at offset 0.

BLOCKSIZE decimal Is set if the value
announced in INIT is
too high.

VERSION string DIDADIT version being
used.

FEATURES string see INFO block

A TAG=VALUE-pair may be no longer than 512 bytes.

MD5: no
Reaction: DATA or FIN

3.3 ERR

General negative response.

The block contains an error code followed by the reason in plain text, e.g. „100
Unexpected block type“. If the second digit in the error code is smaller than 5, it is a
fatal error. If it is 5 or larger, then it is non-fatal.

The complete string may not be longer than 80 bytes.

A list of error codes is supplied in appendix B .

MD5: yes
Reaction: disconnect, end of protocol or specific reaction according to error code

3.4 DATA

A DATA block contains the following information:

• 4 bytes offset
• 2 bytes blocklength
• 0x0-0xFFFF bytes of data

<OFFSET><LEN><DATA>

The receiver should check whether the combination of offset and blocklength is valid.
If not, it should send error 104.

The DIDADIT Protocol Page 4

MD5: yes
Reaction: not neccessary

3.5 REQ

A REQ block requests one or many parts of the file. This can be done at any time
during the transfer, but usually it will be applied after the full filelength has been sent.

If the requested block is larger then the block size agreed upon, it has to split up into
several DATA blocks.

• 4 bytes offset1
• 4 bytes length1
• 4 bytes offset2
• 4 bytes length2
• ...

A REQ block can contain more than one request. After a FIN block has reached the
receiver, only one REQ block can be sent. If the sender has answered all requests, it
transmits a FIN block again and waits for the answer. This procedure is repeated until
the receiver has aquired the file completely.

MD5: yes
Reaction: DATA or ERR

3.6 FIN

After the file has been sent completely, the transmitter sends a FIN block. This block
can optionally contain data in a not yet defined format. After reception of FIN, the
receiver checks for missing parts and, if neccessary, requests them with REQ.

MD5: yes
Reaction: REQ or FIN-ACK

3.7 FIN-ACK

As soon as the client has received all data, it closes the transfer by submitting a FIN-
ACK.

MD5: yes
Reaction: end of protocol

3.9 ECHO-REQUEST

Request echoing of the supplied data block. The response is sent in an ECHO-REPLY
block.

MD5: no
Reaction: ECHO-REPLY

3.10 ECHO-REPLY

Send data received by ECHO-REQUEST back to the originating station.

MD5: no
Reaction: not neccessary

The DIDADIT Protocol Page 5

3.11 ABORT

Can be sent by either station at any time. The DIDADIT connection is disengaged. The
aborting station will not accept any further DIDADIT blocks.

MD5: no
Reaction: dependant on implementation (terminal mode, disconnect)

3.12 CHAT

Used for chat between the station's operators. The text should be displayed
immediately.

This block type may only be used if given in the INFO and START block.

MD5: no
Reaction: not neccesary

4. Starting a DIDADIT transfer

A DIDADIT transfer is initiated by the string

<cr>#DIDADIT#<cr>

directly followed by an INFO block containing file information.

The receiving station must either answer with

<cr>#OK#<cr>

followed by a START-block, or

<cr>#ABORT#<cr>

if the transfer shall be aborted. This can be sent manually, if the receiver is not
capable of DIDADIT.

5. Implementation details

The following has been a recommendation in previous versions of this document but
is mandatory now.

• Send data in original order. Simple implementations perhaps do not use an
index file and, in case of an error, would produce too many requests for block
retransmission.

• For the same reason the transmitter should quickly react upon requests from
the receiving station, especially REQ blocks.

The DIDADIT Protocol Page 6

Appendix A: Compression

Compression is an optional protocol extension. It has been developed by Marco,
DL8NJY and is implemented in WinSTOP.

If an implementation supports compression, it will place a supplementary line into its
INFO block:

COMPRESS=Type1,Length1[,Type2,Length2]...

where TypeX is the compression type and LengthX is the compressed file size if using
this compression. Currently supported types are LZH as implemented in FBB-
forwarding and gzip (standard GNU zip). If the receiving station supports one of the
offered compression types it adds

COMPRESS=Type

to its START block. Then the sender starts transmission of the compressed data.
Please notice that the filesize is now the value given in the COMPRESS line. The value
given by the SIZE line regards the uncompressed file.

Appendix B: Error codes

Protocol errors:

Code Text equivalent Error description

100 Unexpected block type
The received block does not fit in the current
situation (fatal).

101
REQ block with data out of
range

A REQ block with an offset below 0 or beyond
filesize has occured.

102 MD5 validation error
A block contained a wrong MD5 hash with is
different from the currently transferred file.

103 PARTMD5 format error Wrong count of characters.

104 Invalid offset/blocksize
The given data are not in the current file (e.g.
offset > filesize).

150 Unknown block type
The received block does not fit in the current
situation (non-fatal).

The DIDADIT Protocol Page 7

Errors within START/INFO blocks:

200 Illegal line in INFO block

201 Illegal line in START block

202 INFO block without MD5 info

203 Empty file or missing size info in INFO block

204 INFO block without BLOCKSIZE info

205 INFO block without FILENAME info

206 Block corrupt

208 Compression type not supported

Implementation-dependent errors:

300 Could not create file

Appendix C: List of all block types

Number Type

1 INFO

2 START

3 ERR

4 DATA

5 FIN

6 REQ

7 FIN-ACK

9 ECHO-REQUEST

10 ECHO-REPLY

11 ABORT

12 CHAT

The DIDADIT Protocol Page 8

Appendix D: Stuffing

Every block is stuffed using the following system:

Transmission (TX):

• FEND := FESC+TFEND
• FESC := FESC+TFESC

Reception (RX):

• FESC+TFEND := FEND
• FESC+TFESC := FESC

Constants:

Name Code Name Code

FEND 0xC0 FESC 0xDB

TFEND 0xDC TFESC 0xDD

On TX, a FEND- or FESC-byte will change to the two-byte code; on RX, the given
combinations are switched back to the FEND- or FESC-byte. After stuffing is done, the
stuffed data will nowhere contain the FEND-byte. This is our EOB-code.

